‹-- Назад

Свойства функций, непрерывных в точке

Поскольку точки непрерывности функции задаются условием , то часть свойств функций, непрерывных в точке , следует непосредственно из свойств пределов. Сформулируем их в виде следующей теоремы.

        Теорема 3.1   Пусть функции и непрерывны в точке . Тогда функции , , непрерывны в точке . Если , то функция также непрерывна в точке .

        Доказательство.     Оно сразу же следует из теорем о пределах 2.8, 2.9, 2.10 и следствия 2.5.     

Как непосредственное следствие этой теоремы получается следующее

        Предложение 3.3   Рассмотрим множество всех функций, определённых в некоторой фиксированной окрестности точки и непрерывных в этой точке. Тогда это множество является линейным пространством, то есть замкнуто относительно сложения и умножения на постоянные:

        Доказательство.     Действительно, постоянные и  -- это непpеpывные функции (в любой точке); по пpедыдущей теоpеме тогда непpеpывны в точке пpоизведения и . Но тогда по этой же теоpеме непpеpывна в точке и сумма .     

        Теорема 3.2   Пусть функции и таковы, что существует композиция , . Пусть функция непрерывна в точке , а функция непрерывна в соответствующей точке . Тогда композиция непрерывна в точке .

        Доказательство.     Заметим, что равенство означает, что при будет . Значит,

(последнее равенство следует из непрерывности функции в точке ). Значит,

а это равенство означает, что композиция непрерывна в точке .     

Заметим, что, очевидно, в предыдущих двух теоремах можно было бы заменить базу на односторонние базы или и получить аналогичные утверждения для непрерывности слева или справа:

        Теорема 3.3   Пусть функции и непрерывны слева (справа) в точке . Тогда функции , , непрерывны слева (соотв. справа) в точке . Если , то функция также непрерывна слева (спpава) в точке .    

        Теорема 3.4   Пусть функция непрерывна слева (справа) в точке , а функция непрерывна в точке . Тогда композиция непрерывна слева (соотв. справа) в точке .    





Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции


на главную
Hosted by uCoz