‹-- Назад

Частные производные

Пусть  -- внутренняя точка области , и в области задана функция . Рассмотрим ограничение функции на прямую , проходящую через точку параллельно оси . Эта прямая задаётся условиями при ; переменная может при этом произвольно меняться. Поэтому для рассматриваемого ограничения имеется естественная параметризация, смысл которой в том, что "замораживаются" все переменные, от которых зависит , кроме :

Получили функцию одного переменного , как параметризацию ограничения с помощью параметра .

Рис.7.12.



Функция может иметь производную в точке , равную некоторому числу . Это число называют частной производной функции по переменной , вычисленной в точке . Эта частная производная обозначается или .

Сразу же заметим, что значения частных производных от функции в точке , вычисленные по разным переменным и , могут быть различными, так что обозначение типа , без указания переменной, по которой вычислена частная производная, не имеет смысла: в обозначении обязательно нужно указывать переменную, по которой мы дифференцируем.

Итак, чтобы вычислить частную производную от функции по некоторой переменной , нужно фиксировать значения всех переменных, кроме (то есть временно считать их постоянными), а затем по обычным правилам вычисления производных найти производную по этой единственной переменной . Теперь ясно, что для вычисления частных производных никаких новых правил дифференцирования вдобавок к тем, что известны нам для функций одной переменной, не потребуется, ведь при вычислении частной производной мы считаем, что может изменяться только одна переменная.

Считая точку , в которой вычисляется значение частной производной , переменной точкой области и предполагая, что во всех точках эта производная существует, мы получаем, что частная производная  -- это функция, заданная в области (или в её части, если производная существует не везде в ).

Поскольку частную производную функции можно вычислять по каждой из переменных , то функция имеет частных производных

Эти частные производные, вообще говоря, -- различные функции. Их называют также частными производными первого порядка от функции . Итак, функция переменных имеет частных производных первого порядка.

        Пример 7.11   Вычислим частные производные функции двух переменных

по каждой из переменных и .

Производную по найдём, считая переменной, а постоянной величиной:

При этом мы воспользовались тем, что производная суммы равна сумме производных, тем, что производная от (по ) равна , тем, что производная от (по , при постоянном значении ) равна , тем, что производная от (по ) равна 3, и, наконец, тем, что производная постоянного слагаемого равняется 0.

Аналогично найдём производную по переменной . При этом мы считаем, что  -- постоянная, а меняется только , по которой мы и находим производную:

При этом слагаемые и постоянны, и их производная по равна 0; в слагаемом множитель постоянный, и его можно вынести за знак производной, а производная от равна ; наконец, производная от равняется .     

В соответствии с изученным в первом семестре смыслом производной функции одного переменного (напомним, что производная функции равна скорости изменения значений функции в точке ), cмысл частной производной  -- это скорость изменения значений функции при равномерном движении с единичной скоростью через точку по прямой , параллельной оси .

Геометрический смысл частной производной также становится ясен, если рассмотреть ограничение функции , полученное при фиксации значений всех переменных, кроме . Для наглядности ограничимся случаем функции двух переменных и . В этом случае мы можем изобразить график функции на чертеже в виде некоторой поверхности.

Рис.7.13.



Отметим на плоскости точку , в которой вычисляется частная производная , и рассмотрим сечение графика вертикальной плоскостью ; она проходит на плоскости через прямую , заданную тем же уравнением . Тогда эта плоскость высекает в поверхности графика линию, служащую графиком функции . Функция  -- это функция одной переменной , и её производная в точке равна тангенсу угла наклона касательной, проведённой к графику в точке . С другой стороны, . Значит, частная производная имеет геометрический смысл как тангенс угла наклона касательной к сечению графика вертикальной плоскостью .

Точно так же, частная производная имеет геометрический смысл как тангенс угла наклона касательной к сечению графика вертикальной плоскостью . Заметим, что плоскости и взаимно перпендикулярны.

Если функция одного переменного имеет производную в некоторой точке, то эта функция обязательно непрерывна в этой точке; этот факт мы изучили в первом семестре. В случае нескольких переменных ( ) дело обстоит не так. Даже наличия в некоторой точке частных производных функции по всем переменным не достаточно для того, чтобы функция была непрерывной в точке . Приведём пример такой функции двух переменных, что частные производные её сушествуют, а функция, тем не менее, разрывна.

        Пример 7.12   Рассмотрим функцию, заданную при :

Эта функция разрывна в точке , поскольку в любой, как угодно малой окрестности начала координат имеются точки вида , где , в которых значение функции равно

а также точки вида , где , в которых значение функции равно

а значение равно 0.

Однако ограничение функции как на прямую , так и на прямую , проходящие через начало координат, тождественно равно 0:

так что и производные от этих ограничений в точке 0 равны 0, то есть

Итак, обе частные производные в начале координат существуют, но функция разрывна в начале координат.     





Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции


на главную
Hosted by uCoz