‹-- Назад
Возрастание и убывание функции
Возрастание и убывание дифференцируемой функции связано со знаком её производной. Напомним, что функция называется возрастающей на интервале , если для любых двух точек из неравенства следует, что ; убывающей на интервале , если из неравенства следует, что ; невозрастающей на интервале , если из неравенства следует, что , и неубывающей на интервале , если из неравенства следует, что .
Очевидно, что функция возрастает тогда и только тогда, когда убывает функция ; аналогичное утверждение связывает неубывающую функцию с невозрастающей.
Аналогично, если при всех , то убывает на , а если при всех , то не возрастает на .
Доказательство. В силу предыдущего замечания, теорему достаточно доказывать только для случаев и . Пусть при всех и , . Применим к отрезку формулу конечных приращений:
Точно так же, если , то получаем , откуда , что означает неубывание функции.
Имеет место и утверждение, "почти обратное" к предыдущей теореме:
Доказательство. Фиксируем точку и рассмотрим предел, который равен производной:
Вторая часть утверждения теоремы доказывается аналогично.
Заметим, что усилить утверждение теоремы нельзя: из того, что функция возрастает на не следует строгого неравенства для производной. Действительно, в этом нас убеждает простой пример:
Итак, всё, что мы можем гарантировать в случае строгого возрастания (как и в случае нестрогого возрастания, то есть неубывания) -- это нестрогое неравенство .
Практический смысл полученных утверждений о связи возрастания и убывания со знаком производной -- в том, что для того, чтобы найти интервалы возрастания функции , надо решить относительно неравенство , а чтобы найти интервалы убывания -- решить неравенство .
Если два интервала возрастания функции примыкают друг к другу, то есть имеют вид и , и функция непрерывна в точке , то эти два смежных интервала можно объединить: функция будет возрастать на . То же, разумеется, относится и к смежным интервалам убывания функции.
Геометрический смысл связи знака производной с направлением изменения функции легко виден из геометрического смысла производной: если угловой коэффициент касательной к графику (равный производной) положителен, то угол наклона касательной -- острый, что соответствует графику возрастающей функции. Если же угловой коэффициент отрицателен, то угол наклона касательной -- тупой, и тогда функция убывает.