‹-- Назад

Извлечение корня из комплексного числа

Заголовок этого раздела является не совсем точным. Дело в том, что корень из ненулевого комплексного числа однозначно определить нельзя. Он всегда имеет столько значений, какова его степень. Поэтому в данном разделе мы будем говорить о решении уравнения

(17.14)

где неизвестным служит , а  -- известное комплексное число. Но поскольку в школе решение этого уравнения записывалось в виде , то, не слишком соблюдая математическую строгость, можно говорить, что мы будем извлекать корень -ой степени из комплексного числа . Итак, решаем уравнение (17.14).

Если , то . Пусть . Запишем число в тригонометрической форме: . Здесь и  -- известные величины. Запишем неизвестное число в тригонометрической форме: . Здесь и  -- неизвестны. По формуле Муавра

Таким образом,

Если два комплексных числа равны, то их модули должны быть равны. Поэтому . В этом соотношении и  -- положительные числа, следовательно , где справа стоит обычный арифметический корень из положительного числа.

Если два комплексных числа равны, то аргументы у них могут различаться только на величину, кратную . Поэтому , . Отсюда находим, что

В итоге получили:

(17.15)

Значения , отличные от указанных в этой формуле, дадут те же значения , которые можно получить при

        Пример 17.9   Найдите корни уравнения .

Решение. Запишем число в тригонометрической форме:

то есть , . Тогда

При получим:

При получим:

При получим:

При получим:

Ответ: , , , .         







Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции


на главную
Hosted by uCoz