‹-- Назад

Третий способ задания функции: указание процедуры вычисления

Во многих случаях функцию приходится задавать сложным образом, так как предыдущие способы задания функций не годятся. Приведём такой пример.

        Пример 1.17   Пусть и  -- это наибольший корень уравнения . Этим условием задаётся некоторая функция . Её область определения не пуста, так как, например, при получается уравнение , у которого имеется единственный корень , так что и, следовательно, . Однако ни выразить значение формулой или иным "конечным" образом, ни полностью описать область определения функции не удаётся. В этом случае, однако, для задания функции возможно указание некоторой процедуры вычисления её значений , которую можно реализовать в виде компьютерной программы. Эта процедура станет по каждому конкретно заданному значению определять значение либо указывать, что исходное уравнение не имеет корней, то есть что не принадлежит .

Изменяя число в некотором диапазоне, можно найти соответствующие значения с заданной наперёд точностью2 и, например, построить график по точкам.     

Описанный в предыдущем примере способ задания функции, то есть реализация вычисления значений функции в виде компьютерной процедуры, приобретает всё большее значение по мере развития вычислительной техники и расширения области её применения.

Если числовая функция , где , реализуется в виде компьютерной процедуры, то строить график этой функции проще всего по точкам, то есть перебирая с некоторым шагом точки , , и нанося на координатную плоскость точки вида и, быть может, для наглядности соединяя отрезками пары соседних точек. Этот способ, несмотря на свою подозрительную простоту, -- вполне возможный (а может быть, и единственно реальный) способ построения графика при отсутствии какой-либо удобной формулы, выражающей значения через .

Следует иметь в виду, что процедура, выдающая значения функции по заданным , делает это, как правило, лишь приближённо, да и сами значения аргумента часто также оказываются заданными приближённо. Если точность вычислений в какой-либо задаче очень важна, то следует проделать анализ возможной погрешности в значении , вызванной тремя причинами:

а) приближённостью задания переменного (погрешностью аргумента);

б) приближённостью способа получения значения (погрешностью метода);

в) приближённостью выполнения арифметических действий при вычислениях по программе, реализующей метод на компьютере (погрешностью вычислений).

Тщательный анализ погрешности обычно бывает провести гораздо сложнее, чем разработать сам алгоритм вычисления . Если же такой анализ не проводится, то о точности произведённых вычислений судят по косвенным признакам: "хорошо ли ведёт себя" полученный график , согласуется ли он с интуитивными представлениями о том, как выглядит процесс, описываемый функцией , и по другим косвенным признакам.

Подробнее об анализе погрешностей можно прочитать в книгах: Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. -- М.: Высш. шк., 1994; Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. -- М.: Наука, 1987; Рябенький В.С. Введение в вычислительную математику. -- М.: Наука, 1994, а также других учебниках по приближённым методам вычислений.






Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции


на главную
Hosted by uCoz