‹-- Назад
Квадратурная формула трапеций
Пусть снова взято разбиение отрезка на части , . Приближённо заменим площадь под графиком , лежащую над промежутком разбиения , на площадь трапеции, параллельными основаниями которой служат отрезки, задающие значения функции в концах промежутка, то есть и (см. рис.).
Тогда площадь такой трапеции равна, очевидно,
Заметим, что при подсчёте площади каждой очередной трапеции достаточно вычислить значение функции лишь в одной новой точке -- в правом конце очередного промежутка , поскольку точка была правым концом предыдущего отрезка и значение в этой точке уже было вычислено при нахождении площади предыдущей трапеции.
Если все отрезки разбиения выбираются одинаковой длины , то формула трапеций приобретает вид
Пусть функция имеет вторую производную , сохраняющую знак на интервале . Как легко видно из предыдущего рисунка, характер ошибки этой квадратурной формулы таков: если , то есть если график является выпуклым кверху, то и, значит, ; если же и график имеет выпуклость книзу, то и .
Если сравнить это с изученными выше значениями ошибки формулы центральных прямоугольников, то мы видим, что для функций, вторая производная которых сохраняет знак на отрезке интегрирования, знаки ошибок и противоположны. Возникает желание соединить формулу трапеций и формулу центральных прямоугольников так, чтобы эти ошибки по возможности скомпенсировались. Для того, чтобы понять, какую комбинацию формул следует брать, нам нужно выяснить, какую величину имеют эти ошибки и в зависимости от выбора шага . Эти оценки ошибок имеют и самостоятельное значение, поскольку позволяют узнать точность полученного при применении соответствующей квадратурной формулы приближённого значения интеграла.