‹-- Назад
Ранг матрицы
В этом разделе рассмотрим еще одну важную числовую характиристику матрицы, связанную с тем, насколько ее строки (столбцы) зависят друг от друга.
Минором первого порядка является любой элемент матрицы. Так 2, , -- миноры первого порядка.
Миноры второго порядка:
- возьмем строки 1, 2, столбцы 1, 2, получим минор ;
- возьмем строки 1, 3, столбцы 2, 4, получим минор ;
- возьмем строки 2, 3, столбцы 1, 4, получим минор
Миноры третьего порядка:
строки здесь можно выбрать только одним способом,
- возьмем столбцы 1, 3, 4, получим минор ;
- возьмем столбцы 1, 2, 3, получим минор .
Единое, стандартное, обозначение ранга матрицы отсутствует. Следуя учебнику [1], мы будем обозначать его .
Ранг матрицы равен 1, так как есть ненулевой минор первого порядка (элемент матрицы ), а все миноры второго порядка равны нулю.
Ранг невырожденной квадратной матрицы порядка равен , так как ее определитель является минором порядка и у невырожденной матрицы отличен от нуля.
Базисным минором является также минор, расположенный, скажем, в первой и третьей строках, первом и третьем столбцах: . Базисным будет минор во второй и третьей строках, первом и третьем столбцах: .
Минор в первой и второй строках, втором и третьем столбцах равен нулю и поэтому не будет базисным. Читатель может самостоятельно проверить, какие еще миноры второго порядка будут базисными, а какие нет.
Так как столбцы (строки) матрицы можно складывать, умножать на числа, образовывать линейные комбинации, то можно ввести определения линейной зависимости и линейной независимости системы столбцов (строк) матрицы. Эти определения аналогичны таким же определениям 10.14, 10.15 для векторов.
Верно также следующеее предложение, аналогичное предложению 10.6.
Сформулируем теорему, которая называется теорема о базисном миноре.
Доказательство можно найти в учебниках по линейной алгебре, например, в [1], [3].
Предположим, что столбцов образуют линейно независимую систему. Составим из них матрицу . Все миноры матрицы являются минорами матрицы . Поэтому базисный минор матрицы имеет порядок не больше . По теореме о базисном миноре, столбец, не проходящий через базисный минор матрицы , является линейной комбинацией столбцов, проходящих через базисный минор, то есть столбцы матрицы образуют линейно зависимую систему. Это противоречит выбору столбцов, образующих матрицу . Следовательно, максимальное число столбцов, образующих линейно независимую систему, не может быть больше . Значит, оно равно , что и утверждалось.
Результаты предложений 14.15, 14.18 и 14.28 дают следующую теорему.
Нахождение ранга матрицы с помощью вычисления всех ее миноров требует слишком большой вычислительной работы. (Читатель может проверить, что в квадратной матрице четвертого порядка 36 миноров второго порядка.) Поэтому для нахождения ранга применяется другой алгоритм. Для его описания потребуется ряд дополнительных сведений.
1) перестановка строк или столбцов;
2) умножение строки или столбца на число отличное от нуля;
3) добавление к одной из строк другой строки, умноженной на число или добавление к одному из столбцов другого столбца, умноженного на число.
Рассмотрим перестановку строк. Пусть -- минор матрицы , тогда в матрице есть минор , который или совпадает с , или отличается от него перестановкой строк. И наоборот, любому минору матрицы можно сопоставить минор матрицы или совпадающий с , или отличающийся от него порядком строк. Поэтому из того, что в матрице все миноры порядка равны нулю, следует, что в матрице тоже все миноры этого порядка равны нулю. И так как в матрице есть минор порядка , отличный от нуля, то и в матрице тоже есть минор порядка , отличный от нуля, то есть .
Рассмотрим умножение строки на число , отличное от нуля. Минору из матрицы соответствует минор из матрицы или совпадающий с , или отличающийся от него только одной строкой, которая получается из строки минора умножением на число, отличное от нуля. В последнем случае . Во всех случаях или и одновременно равны нулю, или одновременно отличны от нуля. Следовательно, .
Пусть к -ой строке матрицы прибавлена ее -ая строка, умноженная на число . Рассмотрим миноры порядка в матрице . Если через минор не проходит -ая строка, то он совпадает с минором , расположенным в тех же строках и столбцах в матрице , и следовательно, равен нулю.
Если через минор проходят и -ая и -ая строки, то он получается из минора , расположенного в тех же строках и столбцах матрицы , прибавлением к -ой строке минора -ой строки, умноженной на . По свойству определителя . Следовательно, .
Пусть через минор проходит -ая строка и не проходит -ая. Тогда отличается от -ой строкой. Эта строка в является строкой , к которой добавлены элементы -ой строки, умноженные на . По свойствам определителей , где -- минор порядка матрицы , стоящий в -ой строке и в тех же строках, что и минор , исключая -ую, а знак " " связан с возможным изменением порядка строк. Так как все миноры порядка в матрице равны нулю, то .
Итак, в матрице все миноры порядка равны нулю. Следовательно, , то есть при выполнении элементарного преобразования третьего типа ранг не может повыситься. Предположим, что , и . Тогда в матрице к -ой строке прибавим -ую строку, умноженную на число . В результате получим исходную матрицу . По только что доказанному . Получили противоречие: . Предположение не верно, следовательно, .
Алгоритм вычисления ранга матрицы похож на алгоритм вычисления определителя и заключается в том, что с помощью элементарных преобразований матрица приводится к простому виду, для которого найти ранг не представляет труда. Так как при каждом преобразовании ранг не менялся, то, вычислив ранг преобразованной матрицы, мы тем самым находим ранг исходной матрицы.
Пусть требуется вычислить ранг матрицы размеров . Если матрица нулевая, то по определению . В противном случае с помощью перестановки строк и столбцов матрицы добиваемся того, чтобы в левом верхнем углу матрицы стоял ненулевой элемент. Итак, считаем, что .
Первую строку оставляем без изменений. Ко второй строке прибавляем первую, умноженную на число . В результате вторая строка принимает вид
Преобразованная матрица имеет вид
Если все строки, начиная со второй, в полученной матрице нулевые, то ее ранг равен 1, так как есть минор первого порядка, отличный от нуля . В противном случае перестановкой строк и столбцов матрицы с номерами, большими единицы, добиваемся, чтобы второй элемент второй строки был отличен от нуля. Итак, считаем, что .
Первую и вторую строки оставляем без изменений. К третьей строке прибавляем вторую, умноженную на число . В результате получим, что второй элемент третьей строки равен нулю. Затем к четвертой строке прибавляем вторую, умноженную на число , и т.д. В результате получаем матрицу
На каком-то этапе мы придем к матрице, у которой все строки, начиная с -ой , равны нулю (или отсутствуют при ), а минор в первых строках и первых столбцах является определителем треугольной матрицы с ненулевыми элементами на диагонали. Ранг такой матрицы равен . Следовательно, .
Решение. Первую строку оставляем без изменений. Чтобы избежать появления дробей, умножим вторую, третью и четвертую строки на 2:
Первую строку умножим на и прибавим ко второй. Получим строку . Первую строку умножим на и прибавим к третьей. Получим строку . Первую строку умножим на и прибавим к четвертой. Получим строку . В итоге имеем матрицу
Вторую строку оставляем без изменений. К третьей строке прибавляем вторую, умноженную на 2. Получим строку . К четвертой строке прибавляем вторую. Получим нулевую строку. Преобразованная матрица имеет вид
Базисный минор матрицы стоит в первых трех столбцах и первых трех строках, . Следовательно, .