‹-- Назад
Матрица линейного преобразования
В примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении координатных столбцов векторов на фиксированную матрицу, является линейным преобразованием. В этом разделе мы покажем, что все линейные преобразования конечномерного пространства устроены таким же образом. Пусть -- -мерное линейное пространство, в котором задан базис , -- линейное преобразование. Возьмем произвольный вектор . Пусть -- его координатный столбец. Координатный столбец вектора обозначим .
Запишем разложение вектора по базису пространства . Для образа этого вектора получим
Векторы имеют какие-то координатные столбцы, обозначим их , , ..., соответственно. В этой записи первый индекс показывает номер координаты, а второй индекс -- номер вектора. Соответственно,
Составим матрицу из координатных столбцов векторов , ...,
Это означает, что в выбранном базисе действие любого линейного преобразования сводится к умножению матрицы на координатный столбец вектора.
Матрица называется матрицей линейного преобразования . Еще раз напомним, как она составлена: первый столбец является координатным столбцом образа первого базисного вектора, второй столбец -- координатным столбцом образа второго базисного вектора и т.д.
Выберем какой-нибудь базис . Тогда
Из рисунка 19.7 видно, что вектор имеет координаты и .
Поэтому координатный столбец образа первого базисного вектора имеет вид . Координаты образа второго базисного вектора равны и , его координатный столбец имеет вид . В итоге получаем, что в базисе i, j матрица поворота на угол имеет вид