‹-- Назад


Матрица линейного преобразования

В  примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении координатных столбцов векторов на фиксированную матрицу, является линейным преобразованием. В этом разделе мы покажем, что все линейные преобразования конечномерного пространства устроены таким же образом.

Пусть  -- -мерное линейное пространство, в котором задан базис ,  -- линейное преобразование. Возьмем произвольный вектор . Пусть  -- его координатный столбец. Координатный столбец вектора обозначим .

Запишем разложение вектора по базису пространства . Для образа этого вектора получим

(19.2)

Векторы имеют какие-то координатные столбцы, обозначим их , , ..., соответственно. В этой записи первый индекс показывает номер координаты, а второй индекс -- номер вектора. Соответственно,

Подставим это выражение в равенство (19.2) и, используя  предложение 14.3, изменим порядок суммирования

Это равенство означает, что -той координатой вектора служит .

Составим матрицу из координатных столбцов векторов , ...,

Вычислим произведение матрицы на столбец

Мы видим, что -ый элемент столбца совпадает с -ой координатой вектора . Поэтому

(19.3)

Это означает, что в выбранном базисе действие любого линейного преобразования сводится к умножению матрицы на координатный столбец вектора.

Матрица называется матрицей линейного преобразования . Еще раз напомним, как она составлена: первый столбец является координатным столбцом образа первого базисного вектора, второй столбец -- координатным столбцом образа второго базисного вектора и т.д.

        Пример 19.5   Найдем матрицу линейного преобразования из  примера 19.1.

Выберем какой-нибудь базис . Тогда

Следовательно, первый столбец матрицы имеет вид . Аналогично

Второй столбец матрицы имеет вид . В итоге

        

        Пример 19.6   Найдем матрицу линейного преобразования из  примера 19.2. Угол возьмем равным . В качестве базиса возьмем привычный ортонормированный базис i, j.

Из рисунка 19.7 видно, что вектор имеет координаты и .

Рис.19.7.Координаты образов базисных векторов при преобразовании поворота


Поэтому координатный столбец образа первого базисного вектора имеет вид . Координаты образа второго базисного вектора равны и , его координатный столбец имеет вид . В итоге получаем, что в базисе i, j матрица поворота на угол имеет вид

        





Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции


на главную
Hosted by uCoz