‹-- Назад

Изменение матрицы линейного преобразования при изменении базиса

В предыдущем разделе мы установили, что как только в линейном пространстве выбран базис, то каждому линейному преобразованию соответствует матрица этого преобразования. Однако если выбрать в пространстве другой базис, то матрица преобразования, как правило, станет другой. Выясним, как эти матрицы связаны между собой.

Пусть  -- -мерное линейное пространство, и  -- два базиса в этом пространстве. Первый из них назовем "старым", а второй -- "новым". Пусть  -- матрица перехода 19.1.4 а от старого базиса к новому.

        Предложение 19.1   Пусть  -- линейное преобразование пространства , и  -- матрицы этого преобразования в старом и новом базисе соответственно. Тогда

        Доказательство.     Пусть  -- произвольный вектор пространства ,  -- его образ, то есть . Пусть и  -- координатные столбцы векторов и в старом базисе, а ,  -- в новом. Тогда в силу формулы (19.3) . По  предложению 18.5 имеем , . Подставим эти выражения в предыдущую формулу, получаем . Откуда . С другой стороны, в силу формулы (19.3) в новом базисе . Сравнивая это равенство с предыдущим, получаем .     

        Определение 19.2   Две квадратных матрицы и одного порядка называются подобными, если существует такая невырожденная матрица , что .         

        Следствие 19.1   Матрицы одного линейного преобразования, соответствующие разным базисам, подобны друг другу, и наоборот, если матрицы подобны, то они являются матрицами одного и того же преобразования в разных базисах.







Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции


на главную
Hosted by uCoz