‹-- Назад

Метод Ньютона (метод касательных)

Рассмотрение предыдущего метода позволяет предположить, что итерации станут приближаться к корню ещё быстрее, если мы будем выбирать касательную вместо секущей не только на первом, а на каждом шаге. Ясно, что тогда формула итераций будет иметь вид


(сравните с формулой метода одной касательной). Этот метод называется методом касательных, или методом Ньютона. Действительно, последовательные приближения метода Ньютона сходятся гораздо быстрее, чем в общем методе итераций (скорость сходимости приближений в котором, напомним, та же, что у геометрической прогрессии со знаменателем при ).

Поскольку для метода Ньютона

то

В точке получаем , так как . Тем самым, в этом методе график пересекает прямую в точности по горизонтали, что приводит к очень быстрой сходимости итераций к . Именно, имеет место оценка


где  -- некоторая постоянная (не зависящая от ). Если начальное приближение взято достаточно близко от корня , то можно взять .

Заметим, что по сравнению с общей оценкой метода итераций

постоянная заменяется в оценке метода Ньютона (9.2) на стремящуюся к 0 величину ; отсюда и высокая скорость сходимости.

Доказательство оценки (9.2) можно найти в учебниках, специально посвящённых численным методам, например, [Амосов А. А., Дубинский Ю. А., Копченова Н. В. Вычислительные методы для инженеров. -- М.: Высш. шк., 1994], [Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. -- М.: Наука, 1987], [Ортега Дж., Пул У. Введение в численные методы решения дифференциальных уравнений. -- М.: Наука, 1986].

Скорость сходимости итераций, которая задаётся формулой (9.2), называется квадратичной. Квадратичная скорость сходимости означает, примерно говоря, что число верных знаков в приближённом значении удваивается с каждой итерацией. Действительно, если , и , то . Это и означает, что число верных знаков при переходе к следующему приближению возросло с до , то есть удвоилось.

Геометрический смысл метода Ньютона состоит в том, что на каждом шаге мы строим касательную к графику в точке очередного последовательного приближения , а за следующее приближение берём точку пересечения этой касательной с осью . Тем самым наклон прямой подстраивается на каждом шаге наилучшим образом (ведь кривизну графика, связанную с второй производной, мы не учитываем, и поэтому неизвестно, в какую сторону от касательной отклонится график).

Рис.9.13.Последовательные приближения метода Ньютона


Заметим, что по-другому идею метода Ньютона мы можем описать так: на каждом шаге вместо исходного уравнения мы решаем приближённое, линеаризованное в точке уравнение

в котором левая часть -- это многочлен Тейлора первого порядка для функции в точке , то есть линейная функция

Решением линеаризованного уравнения служит следующее приближение , в то время как решением исходного точного уравнения служит искомый корень .

Идея замены точной (но сложной) задачи последовательностью более простых линеаризованных задач весьма продуктивна в приближённых методах; например, такая идея даёт эффективный способ решения многомерных задач с ограничениями (метод Франка - Вулфа в нелинейном программировании, см., например, [Киселёв В.Ю., Экономико-математические методы и модели. -- Иваново: изд. ИГЭУ, 1998]).

        Пример 9.7   Решим методом Ньютона всё то же уравнение , взяв в качестве начального приближения и задав точность (ту же, что была взята при решении этого уравнения методом одной касательной). Поскольку , то итерационная формула метода Ньютона будет такой:

Применяя эту формулу, последовательно находим:

так что с точностью . Как мы видим, значение корня с нужной нам точностью было получено уже на третьем шаге. (Четвёртый шаг понадобился для того, чтобы можно было убедиться, что с нужной нам точностью значение перестало изменяться.)     

        Упражнение 9.2   Найдите тот же корень, начав с . (Заметим, что итерационную формулу при этом менять не надо, в отличие от метода одной касательной.) Сколько потребуется итераций для достижения той же точности? Обратите внимание на то, что сначала приближения ( и ) окажутся даже вне отрезка , но затем быстро сходятся к с той же стороны, что в примере.

Ответ: Потребуется 6 итераций.     





Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции


на главную
Hosted by uCoz