‹-- Назад
Непрерывность функции на интервале и на отрезке
Пусть теперь -- (замкнутый) отрезок в . Назовём функцию непрерывной на отрезке , если непрерывна на интервале , непрерывна справа в точке и непрерывна слева в точке , то есть
Аналогичное определение можно дать и для полуинтервалов вида и , включая случаи и . Однако можно обобщить данное определение на случай произвольного подмножества следующим образом. Введём сначала понятие индуцированной на базы: пусть -- база, все окончания которой имеют непустые пересечения с . Обозначим через и рассмотрим множество всех . Нетрудно тогда проверить, что множество будет базой. Тем самым для определены базы , и , где , и -- базы непроколотых двусторонних (соответственно левых, правых) окрестностей точки (их определение см. в начале текущей главы).
Нетрудно видеть, что тогда при и при это определение совпадает с теми, что были выше даны специально для интервала и отрезка.
Напомним, что все элементарные функции непрерывны во всех точках своих областей определения и, следовательно, непрерывны на любых интервалах и отрезках, лежащих в их областях определения.
Поскольку непрерывность на интервале и отрезке определяется поточечно, имеет место теорема, которая является непосредственным следствием теоремы 3.1:
Из этой теоpемы вытекает следующее утвеpждение, точно так же, как из теоpемы 3.1 -- пpедложение 3.3:
Более сложное свойство непрерывной функции выражает следующая теорема.
Доказательство. Рассмотрим середину отрезка . Тогда либо , либо , либо . В первом случае корень найден: это . В остальных двух случаях рассмотрим ту часть отрезка, на концах которой функция принимает значения разных знаков: в случае или в случае . Выбранную половину отрезка обозначим через и применим к ней ту же процедуру: разделим на две половины и , где , и найдём . В случае корень найден; в случае рассматриваем далее отрезок , в случае -- отрезок и т. д.
Получаем, что либо на некотором шаге будет найден корень , либо будет построена система вложенных отрезков
Доказанная теорема фактически даёт нам способ нахождения корня , хотя бы приближённого, с любой заданной наперёд степенью точности. Это -- метод деления отрезка пополам, описанный при доказательстве теоремы. Более подробно с этим и другими, более эффективными, способами приближённого нахождения корня мы познакомимся ниже, после того, как изучим понятие и свойства производной.
Заметим, что теорема не утверждает, что если её условия выполнены, то корень -- единственный. Как показывает следующий рисунок, корней может быть и больше одного (на рисунке их 3).
Однако, если функция монотонно возрастает или монотонно убывает на отрезке, в концах которого принимает значения разных знаков, то корень -- единственный, так как строго монотонная функция каждое своё значение принимает ровно в одной точке, в том числе и значение 0.
Непосредственным следствием теоремы о корне непрерывной функции является следующая теорема, которая и сама по себе имеет очень важное значение в математическом анализе.
Доказательство. Рассмотрим вспомогательную функцию , где . Тогда и . Функция , очевидно, непрерывна, и по предыдущей теореме существует такая точка , что . Но это равенство означает, что .
Заметим, что если функция не является непрерывной, то она может принимать не все промежуточные значения. Например, функция Хевисайда (см. пример 3.13) принимает значения , , но нигде, в том числе и на интервале , не принимает, скажем, промежуточного значения . Дело в том, что функция Хевисайда имеет разрыв в точке , лежащей как раз в интервале .
Для дальнейшего изучения свойств функций, непрерывных на отрезке, нам понадобится следующее тонкое свойство системы вещественных чисел (мы уже упоминали его в главе 2 в связи с теоремой о пределе монотонно возрастающей ограниченной функции): для любого ограниченного снизу множества (то есть такого, что при всех и некотором ; число называется нижней гранью множества ) имеется точная нижняя грань , то есть наибольшее из чисел , таких что при всех . Аналогично, если множество ограничено сверху, то оно имеет точную верхнюю грань : это наименьшая из верхних граней (для которых при всех ).
Если , то существует невозрастающая последовательность точек , которая стремится к . Точно так же если , то существует неубывающая последовательность точек , которая стремится к .
Если точка принадлежит множеству , то является наименьшим элементом этого множества: ; аналогично, если , то .
Кроме того, для дальнейшего нам понадобится следующая
Доказательство. Поскольку -- ограниченное множество (это часть отрезка ), то оно имеет точную нижнюю грань . Тогда существует невозрастающая последовательность , , такая что при . При этом , по определению множества . Поэтому, переходя к пределу, получаем, с одной стороны,
В случае, когда множество задано неравенством , мы имеем при всех и по теореме о переходе к пределу в неравенстве получаем
Доказательство. Предположим обратное: пусть не ограничена, например, сверху. Тогда все множества , , , не пусты. По предыдущей лемме в каждом из этих множеств имеется наименьшее значение , . Покажем, что
Точно так же далее доказывается, что при всех , при всех , и т. д. Итак, -- возрастающая последовательность, ограниченная сверху числом . Поэтому существует . Из непрерывности функции следует, что существует , но при , так что предела не существует. Полученное противоречие доказывает, что функция ограничена сверху.
Аналогично доказывается, что ограничена снизу, откуда следует утверждение теоремы.
Очевидно, что ослабить условия теоремы нельзя: если функция не является непрерывной, то она не обязана быть ограниченной на отрезке (приведём в качестве примера функцию
Поиск наилучших постоянных, которыми можно ограничить функцию сверху и снизу на заданном отрезке, естественным образом приводит нас к задаче об отыскании минимума и максимума непрерывной функции на этом отрезке. Возможность решения этой задачи описывается следующей теоремой.
Доказательство. Так как по предыдущей теореме функция ограничена на сверху, то существует точная верхняя грань значений функции на -- число . Тем самым, множества , ,..., ,..., не пусты, и по предыдущей лемме в них есть наименьшие значения : , . Эти не убывают (доказывается это утверждение точно так же, как в предыдущей теореме):
Аналогично доказывается существование точки минимума.
В этой теореме, как и в предыдущей, нельзя ослабить условия: если функция не является непрерывной, то она может не достигать своего максимального или минимального значения на отрезке, даже будучи ограниченной. Для примера возьмём функцию
Заметим, что доказанная теорема не даёт практического способа находить точки минимума и максимума функции на заданном отрезке. Такой способ мы обсудим позднее, когда изучим понятие производной. Однако теорема важна тем, что даёт нам уверенность в том, что искомый экстремум существует и мы сможем его отыскать.